Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone.

نویسندگان

  • Anne Marie McNeill
  • Chunying Zhang
  • Frank Z Stanczyk
  • Sue P Duckles
  • Diana N Krause
چکیده

BACKGROUND AND PURPOSE In vivo and in vitro rat models of hormone therapy were used to test the following hypotheses: (1) estrogen acts directly on cerebrovascular estrogen receptors to increase endothelial nitric oxide synthase (eNOS); (2) increased protein correlates with higher NOS activity; and (3) effects of estrogen on eNOS are altered by concurrent treatment with either medroxyprogesterone acetate (MPA) or progesterone. METHODS Blood vessels were isolated from brains of ovariectomized female rats; some were treated for 1 month with estrogen, estrogen and progesterone, or estrogen and MPA. Isolated cerebral vessels were also treated in vitro with estrogen in the absence and presence of progesterone, MPA, tamoxifen, and the estrogen receptor antagonist ICI 182 780. Levels of eNOS were measured by Western blot, and NOS activity was measured by [14C]arginine-[14C]citrulline conversion. RESULTS Chronic hormone treatment in vivo resulted in plasma levels of 17beta-estradiol, progesterone, and MPA in the range of values found in humans. Estrogen treatment resulted in higher levels of cerebrovascular NOS activity that paralleled increases in eNOS protein. In vitro estrogen treatment for 18 hours also resulted in a concentration-dependent increase in eNOS protein (EC50 approximately 300 pmol/L) that was completely prevented by estrogen receptor antagonists tamoxifen or ICI 182 780. However, cotreatment with progesterone or MPA, either in vivo or in vitro, did not alter the effect of estrogen on eNOS protein. CONCLUSIONS Estrogen receptor activation in cerebrovascular tissue results in increased eNOS activity and protein levels. The latter effect persists in the presence of either progesterone or MPA. Thus, increased NO production by eNOS may contribute to the neuroprotective effects of estrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medroxyprogesterone Acetate or Progesterone Cerebral Blood Vessels : Effect Preserved After Concurrent Treatment With Estrogen Increases Endothelial Nitric Oxide Synthase via Estrogen Receptors in Rat

Medroxyprogesterone Acetate or Progesterone Cerebral Blood Vessels : Effect Preserved After Concurrent Treatment With Estrogen Increases Endothelial Nitric Oxide Synthase via Estrogen Receptors in Rat Print ISSN: 0039-2499. Online ISSN: 1524-4628 Copyright © 2002 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, Dallas,...

متن کامل

Estrogen receptor activation of phosphoinositide-3 kinase, akt, and nitric oxide signaling in cerebral blood vessels: rapid and long-term effects.

Estrogen receptor regulation of nitric oxide production by vascular endothelium may involve rapid, membrane-initiated signaling pathways in addition to classic genomic mechanisms. In this study, we demonstrate using intact cerebral blood vessels that 17beta-estradiol rapidly activates endothelial nitric-oxide synthase (eNOS) via a phosphoinositide-3 (PI-3) kinase-dependent pathway. The effect i...

متن کامل

Estrogen and progestagens differentially modulate vascular proinflammatory factors.

The potential benefit of ovarian hormone replacement therapy in cerebrovascular disease is well supported by experimental observations but not by recent large, randomized clinical trials. This discrepancy points out the need for better understanding of the vascular actions of ovarian hormones as well as medroxyprogesterone acetate (MPA), a synthetic analog of progesterone (P) widely prescribed ...

متن کامل

Effect of estrogen on cerebrovascular prostaglandins is amplified in mice with dysfunctional NOS.

Chronic estrogen treatment increases endothelial vasodilator function in cerebral arteries. Endothelial nitric oxide (NO) synthase (eNOS) is a primary target of the hormone, but other endothelial factors may be modulated as well. In light of possible interactions between NO and prostaglandins, we tested the hypothesis that estrogen treatment increases prostanoid-mediated dilation using NOS-defi...

متن کامل

Progesterone increases nitric oxide synthesis in human vascular endothelial cells through activation of membrane progesterone receptor-α.

Progesterone exerts beneficial effects on the human cardiovascular system by inducing rapid increases in nitric oxide (NO) production in vascular endothelial cells, but the receptors mediating these nongenomic progesterone actions remain unclear. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that progesterone binds to plasma membranes of HUVECs with the characteristi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 33 6  شماره 

صفحات  -

تاریخ انتشار 2002